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Abstract. In this work we present a unified strategy for identification of material parameters
of visco-plastic models from test data of complex structures. For consideration of the associated
inhomogeneous deformations and stresses the finite-element method is used. The objective
function of least-squares type is minimized by a method based on gradient evaluations, such
as an sQP method or a projection algorithm due to Bertsekas. The sensitivity analysis, i.e. the
determination of the gradient of the objective function, is explained in detail. As a result a
recursion formula is obtained. In the numerical examples we compare gradient-based methods
with evolutionary methods for homogeneous problems. Concerning inhomogeneous problems
we discuss the results obtained for a material law due to Steck.

1. Introduction

The development of material laws for modelling of elasto/visco-plastic deformations consists
of both the development of a mathematical model and the determination of material-
dependent constants. The identification of these parameters from experimental data requires
the solution of inverse problems. So far only uniaxial experiments (see e.g. [73) have
been considered for this task, i.e. field equations have not been taken into account.
For minimization of the corresponding objective function stochastic methods such as the
evolution strategy [14] are usual. These methods can easily be implemented; however, in
general they lead to a long CPU time because of the large number of function evaluations
(several 100000).

The approach in our paper is twofold. Firstly, complex structures such as a plate with a
hole are taken into account for determination of the material parameters. Thus plastic and
visco-plastic features including hardening are activated by deviatoric stresses. Only in this
way is a general verification or falsification of a material law possible. The incorporation
of inhomogeneous stresses and strains requires the solution of field equations. For this task
the finite-element method (FEM) is used. For time integration of the evolution equations we
use the second-order mid-point rule.

Secondly, for minimization of the objective function of least-squares type a method
based on gradient evaluations is applied. The specific algorithms are an SQP method [131
or, alternatively, a projection algorithm due to Bertsekas [23. In order to determine the
gradient of the objective function a sensitivity analysis has to be carried out.
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2. Formulation of the direct and inverse problems

Let II3 be the Euclidean space, and let T = [0, T] be the time interval of interest. The

object of our investigation is a body B. Let £2 C R3 be the reference placement of B with
smooth boundary a8, then any material point P e B is defined by x(P) E 2. The static
equilibrium equation is given by

diver + pb = 0 t ET, I E 5 (1)

where at denotes the symmetric Cauchy stress tensor, and pb is the body force (e.g. the
gravity force). As usual we assume

a8 1U an2r = a£ aa, n an, = 0 (2)

We shall denote by fit the prescribed boundary displacement on an&2 and designate by it
the prescribed boundary traction vector on as2,. In a geometric linear theory with small

strains the total strains Et can be derived from the displacement ut according to

et = 1/2 ((grad ut)T + grad U,) (3)

and we assume an additive split

el + el, (4)

The elastic part is given by

sel C-Ic (5)

where

C=2Ml1+ XI1 (6)

is the elasticity tensor with the Lamb constants g and X. Observe that the preceding

equations are linear. The source of non-linearity in our problem arises from the type of
constitutive equation that relates the stress field and the displacement field as discussed
below.

The inelastic part in equation (4) results from the set of evolution equations

ft = (v., ot, q. t, * (7)

(it =f (rs, crh. qt, t, . ..)(8)
where q, are so-called internal variables and n E RI is a vector of m material parameters.
It follows that both C and Et , qt are functions dependent on material parameters K =

[Kl, ... ., K.]'.

As an example of a material law the stochastic model due to Steck with seven material

parameters and one internal variable is given according to [7, 16]

&in =3¢n i+/F e9Dn- (9)

bt1=" Xcr exp [I -) ](2 sinh ( Rarvut)) exp (-7mY) (10)

F, = skeI- c 2exp [- ° I ])
Xt ~ L R T 

n -st (12)

a1,1 = 4s; *S, (13)
a,=( -1®1)2(4

3 cr,St = (I - 1 I (& I) (14)
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where )', AV, C1 , C2 , a, A, K are material parameters, R is a gas constant and Ft is an internal
variable for isotropic hardening.

For complete description of the initial boundary-value problem we assume the initial
conditions

u(t=0)=UO qQt=0)=qO ar(t=0)=a . (15)
Let V be the parameter space, and let U x I be the solution space for the displacements of
the above initial boundary-value problem. Thus, for a specific set of parameters Kr c Y, it
is possible to solve the corresponding direct problem

i; H'i U((K) (16)

in a forward calculation. In introducing a solution operator, the corresponding surjective
mapping is denoted by

S K {tflUt N) (17)

Let ft E 'P x I denote given data e.g. from experiments. Then, in general, it is not possible
to solve the inverse problem

find x: Ut1 r() = ftt for given ut E P X I (18)

in a backward calculation. Basically, there are two reasons:

1. In general U x 7 A P x A, i.e. the data space cannot be 'reached' by S.
2. There exists no unique operator S-` of S.

Problems of this kind are called ill posed problems or Hadamard problems (see e.g.
[6, 91). Therefore the backward calculation is replaced by an optimal approach strategy,
where the solution vector ut(n) should be as close as possible to the given data it in a
certain sense. This requirement is expressed by the optimization functional

f () := lut (K.) - &itI 1 #X min. (19)
ney

Here, the specific weighted norm on U x I has to be chosen. For instance, in order to take
into account the dispersion of measurements, one can implement a dispersity function as a
weighting function. Taking an jj 11L2-norm (without weighting) leads to the least-squares
functional

f 'f nun.(
f A) -J Jiu)\n/-2d 1 d t m*t . (20)

Such problems are characterized by the non-convexity of the objective function f and
improper conditioning of the Hessian of f(tc).

3. Solution of the direct problem

A3. 1 Discrete formulation and solution strategy

For solution of the time-dependent direct problem (16) the balance law (1) is multiplied
with test functions 77 of an appropriate Hilbert space

v := In E (H'(2)) 3 j1 = 0 on 8Q,, (21)
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and the result is integrated over the domain QŽ. Finally, application of Green's theorem
leads to the weak form of equilibrium

g(at, ,7) = f at: grad dv -f Pb ndv-f t- .qda = 0 t E . (22)

Note, that in view of a finite-element displacement method the stresses a, are defined to be

dependent on the displacement field u,, i.e.

cr :=&(Ut) t El (23)

Let

NE

52 = U S. (24)
e=I

define the discretization of S2 into NE finite elements, and let Ut,, be the approximation of
Ut, where u,j, = NV e Vh c V, N e Vh are shape-functions, and V, is a vector of nodal

displacements. Thus from equation (22) the condition for equilibrium

NE NE

R(V)=U fBT&~(V,)d&n b!TpttŽ+aLN Tita1 40 t e (25)

R' (Vt)

is derived, -where B is the strain-displacement matrix in standard notation.
For determination of the displacements Vt and the stresses &(V) an incremental strategy

is necessary. Let N be the number of time steps Atk+l = tk+l - t 5 , k = 0, ... , N - 1,
lo = 0, tv = T, and let

AVk+l = Vk+i-Vk k = 0,..., N - I (26)

be incremental displacements. Then equation (25) is replaced by

NE NYE

U f B (VI ) d-J U N N pbdQ + f N T+ 1a4 1

R4 1kb(AVk+) Pk+ I

k = 0,..., NI-1. (27)

The unknown stresses d-(AVk+ 1) are obtained by time integration of the evolution equations
(7) and (8) with respect to the basic equations (3)-(5) at any Gaussian point xi., ig a
It..., Ng. Let

rk+1 := f(AVksl) (28)

then, by use of a mid-point rule the following equations are obtained:

Agk+I = Age,k+l + AEiIk+I (29)

qig,k+l = qig,k + Aqig8 k+] (30)
ig=1, ...,NG k= 0,..., N-1
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with

A- igkil = BigA\k+l (31)

Bagel k= C1 (Cra+i1 - trik) (32)

U~Tg ~= Atk±t+l k+l/ 2 (aigk+l, qig,k+l) (33)

Aqrgk+i= Atk+14g,k+I/2 (arg,k+l, (Lg,k+1) . (34)

By definition of a vector of process variables Yigk+l := [Caig5 k+l qigk+1], by multiplication
of equation (29) with the elasticity matrix, and by use of equation (30) we thus can formulate
the following non-linear system of equations for any Gaussian point x 8g:

91 FA ge rgk1 + at 5 .s-CA i
G(Yig k+l) *= [ ]=[ gk+l aigk+ g k+1 ] (35)

1 2 %f,k+l - qlg,k -Aqig,k+l
ig= 1,..,NNG k=0,...,N-1.

For solution of the direct problem in discretized form, basically, equations (27) and (35)
have to be solved. The definition (28) for the displacement 1k as independent variables
and the stresses ak as dependent variables implies the following solution strategy: the FE
analysis contains an outer loop, the global iteration for determination of Vk+,1 , and an inner
loop, the local iteration at any Gaussian point for determination of the process variables
aikr+l and qug,k+1.

3.2. Local iteration

To simplify notations the index ig will be neglected in this section. The aim of the
local iteration is to determine the process variables Yk+l := [cra+1, qk+] for given

hekel = BAVk+l such that equation (35) is satisfied. By use of a Newton method the
iteration scheme is defined as

Yi+l - Y- - ai[J lSG. (Yk+,, (36)k+1 - k+1aaV 1 '(Y+,36
where

J= a3G(Yk+) (37)

is the Jacobian of G(Yk+ ). In the case of the material law of Steck, the result for J is
given in subsection A.1 of the appendix.

We make the following remarks.

1. The process vector Yk+] consists of values of different size. Therefore it is necessary
to scale the system of equations. In our program scaling was carried out with the diagonals
of the Jacobian J=°O).

2. In order to achieve global convergence, a line-search parameter a' is determined at
each iteration step. For this we require that the merit function JIG 11 decreases at each iteration
step j (Dennis and Schnabel in [31). However, sometimes numerical tests showed very small
values for a, thus slowing down the convergence. Therefore we applied a modification of
Grippo et al [5], where every K steps cycles are introduced into the iteration scheme, in
which no line search is done or a different merit function is used (for further details see

[53)-
3. The special case of a plane-stress problem can easily be implemented in an existing

code, if the process vector is defined as tkd := [.,*k+10aYk+ITr+, AEzk+lqk+l]
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3.3. Global iteration

The solution of equation (27) is obtained according to

AVj+' =- AV1%3 - ea[Kjff'Rj+' (38)

where the Jacobian of the residual vector

KT = d/ f = U L Bdd (39)
dAVk+l e-i Jn, dAEk+i

is known as the consistent tangent matrix. Therefore the term CT = dak+¶/dAek+l has
to be determined. In view of the fact that both the stresses 0 rk+l and the internal variables
depend on Aek+i, a condensation of 'k+i is done as follows. We begin with the definition
of an implicit function (compare the local iteration)

g1(Akq l)= CA^k+i - 0 k+I + Crk- = 0 (40)
= gt (Aek+[,ak1l(Aek)l),qkil(AEktl)) (41)

=g (Ask+ I, Ok+l (Ak+l), qk+i (ark+l Ak+i)) (42)
=-IA (ek+I, ork+lI(AEk÷) (43)

The total differential of A= is given by

dgl ag1 a~j+ dak+- 0 (44)
dAe+kl 8Ask+l 8 0k+l dAek+i

Thus the unknown term is found to be

dak~l=_ ab, ] gi (45)
d/\ck+l L Bak+l J Aek+l

where

81 = C a§_ = OS1 + a8 dqkil (46)
aMEkW Oak+i -ak+l aqak+ do&+i

For determination of dqk+ I/ dak+I we define

92= qkIi - k - Aqkfl (47)

=: 2 (irks I , qk+ I (°Jt* I (48)

and we deduce

dqk+l _ F ag 2 ag2 (49)
derkFs Lana~l aO-k+ldak+l I 8

'kI-jBa+

To summarize, for the determination of KT

1. The partial differentials of gj and 92 with respect to the process variables oak+i, Q*+1
(i.e. the Jacobian in the local iteration) have to be provided,

2. The internal variables qk+l are condensed, and
3. The special case of plane-stress problems can be treated by further condensation.

The result for CT in the case of the material law due to Steck is presented in subsection
A.2 of the appendix.
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4. On solution of the inverse problem

4.1. Discrete formulation and solution strategy

We assume that experimental data at points xP E Q, p =P1, . . , MP for discrete time
values tk, k = 1, . N are given. Thus a possible function for the inverse problem can be
as follows:

MP NfL =LE kp-VkP1k 2 -12 min. (50)
p=1 k=1

Additionally, equilibrium conditions have to be satisfied. From equation (27) of the direct
problem we deduce the following constraints:

Rk(l., AVk) = 0 k = ,...N. (51)

Further constraints for the material parameter it (e.g. conditions between the material
parameters, upper and lower side constraints) shall be denoted by

hl () = 0 (52)
hi2(c) <, 0. (53)

Thus equations (50)-(53) define the non-linear optimization problem for the inverse problem
in discretized form, where (it, AVk, k = 1, . . . , N) is the set of unknowns. In general this
problem is characterized by its large dimension. Note that the above type of problem is very
similar to problems in structural optimization (see e.g. [1, 11]). For this kind of problem
the following solution strategy is suitable.

For two reasons it is advisable to separate a finite-element calculation for solution of
the direct problem from the optimization process.

* The existing finite-element code for solution of the direct problem should not be
changed too much.

* In general dim(c) «< dim(AVk, k = 1, .. ., N).

The separation is possible via the following definition.

e The material parameters are independent variables.
* The displacements are dependent variables, i.e. ANVk = AVk(n), k = 1, ... , N.

The resulting optimization problem is given by

fQ'c, Xc)) min,,
hi (., x:rl) = 0 (54)
h2(r,, x:r.)) < 0

where x(/c) := {Alk, k = 1. N) is defined to be the solution of the direct problems

R.k+l (r, AVk+i (c)) = O k = 0,. .. , N-1 (55)

for given (frozen) r. in a finite-element analysis.
It can be seen that the above strategy reduces the dimension of the optimization problem

significantly to dim(^.). However, it should be noted that the functions of interest depend
on Xt both explicitly and implicitly.

As a practical consequence it follows that in an optimization process on solution of the
problem (54) a complete non-linearfinite-element analysis has to be carried out for any set
of material parameters Ir.
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Optimization algorithms for problem (54) can be classified into methods which use

only function values (e.g. the evolution strategy) and methods which use function values

and gradients (e-g. the SQP method according to Schittkowski [13] or a projection algorithm

due to Bertsekas [21). Since in general the first kind of method is not efficient due to the

large number of function evaluations the second kind will be used. Therefore the gradient

of the objective function has to be determined in a sensitivity analysis.

4X2. Sensitivity analysis

For explanation of the sensitivity analysis the following objective function shall be

considered:
N MlP

fb(*) = H lIV,.P(n) - VP ll. (56)
1=1 p=l

Thus the gradient is given by

dfc N MEP lc- pdV p2 EE(VP(t) - vidVP (57)
1 =1 P=1 

N UlP I AV
= 2L ( (K)V - ) k: dv. (58)

i=I p=1 k='O

where in equation (58) we use the fact that the displacements are the result of an incremental

step-by-step calculation. Next, for simplicity of notation we shall neglect the indices i, p.
We start with the implicit function (55). The total differential is given by

dR*k+i aRk+I OI4+1 dAVk+l - (59)
= + 0 59

dr. a ra 8AVk+l dit

KT

and solving this equation for the unknowns yields

d i'= -[ I -I 81+1 (60)
dAVk+i [KT]) 8R*i (0

For evaluation of equation (60) it has to taken into account, that a factorization of KT is

available from solution of the direct problem [1, 11. Now it remains to determine the
partial load vector

ank+I NE drak+1K e=l UiB / (61)

For this task a similar procedure as for determination of KT in equation (39) can be applied,
i.e. the internal variables are condensed. Again, the basis is an implicit function

g1(it) = CAek~l -ak+1 + 0k - CAEk-1 = 0 (62)

= gj (K, qk+ IK), Ok+ (K), Yk(i))

= gl(r-, t+{fi}7) Ck+l(r.).qk+l(ak+I(r-)}sYk(M), qkil(yk(.)3))

= 1 : *, Crk+F IK), Yk (r-))

where the total differential is given by

dg1 = ap, 84g dyk d++ - 0 (63)

dit 8a ah d/c aok+l dit
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Solving for the unknowns yields

dark+l _ at dIa', a' dY,,
k1 + l (64)

dr. 8
(Tk±I II a 8Yk d rc

L--2 -3 4

with

Termi: aI_ a- i + dqk+
aCk+l aCk+t aqk+l dak+,

5

Term 2: aK =g, + 8jt ds (65)
ai 8n r 8

qk+l dit

6

Term 3 Ij8 _ a~1 + a dqk+l

TmYk 8 Yk 8gk~l dYk

7

Terms 5-7 are derived from the condition g2 = 0 as

Term 5 dqk+l = -_ [ a 2 ] 2
dffk~~l aqk+l acrk+l

Term 6: d k+= [ J2 -] 2 (66)

dqk+ I F~ V' __

Tern7: --7 ]
dlik aqk~l a 834

For determination of term 4 an implicit function is defined at the previous time step as

Gk _ 9| gik 1 F CAsk - ak + O*k- - CAEk 1{67
L Y2aqkj -qk- - Atk4kl/2 j

= Gk (it, Yk(n,), Yk-j (n.), Aek(K)) = 0. (68)

For this function the total differential is given by

dG = 8Gk + aGk dli 8 d 1kk + aGk dAek (69)

di an ai d + aYk-I dit a~et dr,
and we deduce

dYk _ _aGk + aGk dYk-I aGk dAEk . 70)
d L. 8Yk a 8 K 8 Yk dt aAEk dit

a 9 to 11 12 13

Concerning terms 8-13 the following remarks are made.

Term 8: This term corresponds to the Jacobian J of the local iteration, and thus it is

available.
Term 9: For this term the partial derivatives of the function G with respect to the

material parameters it are required. For the special case of Steck's model the result is given
in subsection A.3 of the appendix.
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Term 10: Note the simple relation

aGk = -Gk _ 21. (71)
834, aYk

Term 11: This term can be adopted from the previous time step. Thus it can be seen that
the sensitivity analysis yields a recursion formula. It is not necessary to take into account
results from time steps which are before the previous step.

Term 12: This term corresponds to the elasticity matrix C.

Term 13:

dAEk dAVk
d -Bd

The sensitivity analysis may be summarized as follows.

1. Firstly the partial differentials of the functions g, and g2 with respect to it, Yk+l, Yk
and Ae&+i have to be provided.

21 The internal variables qk+± are condensed.
3. As a result a recursionformula is obtained.

4. In the case of homogeneous ID problems (i.e. in the absence of field equations) the
remarks in points 1-3 are also valid.

The following remarks are made on numerical implementation.

1. The numerical implementation-including condensation-can be carried out
independently of the specific material law if the partial derivatives of the functions gi and
g2 are provided. This fact is of importance for implementation of further material laws.

2. The gradient is calculated in parallel to the finite-elemente analysis by doing an
update of both the process variables Y3 and its derivatives dYk/ dro at each time step. Thus
storing results for dY3/dit at all time steps is avoided.

5. Examples

5.1. Stationary creep for aluminium according to Servi and Grant

In the first example the iteration behaviours of an evolution strategy and a gradient method,
the Bertsekas algorithm, are compared. The material law and the experimental data for
aluminium according to Servi and Grant [151 are taken from [r]. In this thesis parameters
were identified for tension tests with homogeneous stresses and deformations. The material
law is given for the rates of strains in logarithmic form as

ln(k,) = Kt- KZUO + K3 In [ sh (•R4ff)] (72)
RT R

where R = 8.314 J molt' K-' and Uo = 149 Id molP.
The following least-squares function has to be minimized:

'It

f(c) = E [ln(ts,) - in(ft.)] f (73)

The gradient is simply given by

dfd () = 2i[n(Ssj)- n(eSt! ] d (ln(&,t)) (74)
-d Zl(4)-lnn,) dic
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d (ln(t 5,)) = I

dKIr

d (t(&,)) Uo

dc2 RT

( ( n~s j)) = In [sh ( R40` )]
dK3 I(RTa

d (In(t, 1 )) = 4' K4C aIRT
dK4 c RT sh ( 4 oa/RT)

(75)

(76)

(77)

(78)

Table 1. Aluminium according to Servi and Grant: starting vector, solution vector and

corresponding function values for three optimization algorithms.

Starting vector ot Solution vector v'

10.0 25.170
K 1.0 1.065

10.0 3.815
1.0 0.371

f () 57391.27 4.042

-4 -
-6 -

-a

-12 

-16 -

-18

0 5

l1 I 15 , 20 2 I . . . . I , , 0 , 3 . . . . . . . . . . 4 .

I 0 1 5 20 25 so 35 40 45

a [N/mm2]

Figure 1. Aluminium according to Servi and Grant: experimental data and optimized data for

six different temperatures.

For optimization, three methods, a one-level evolution strategy, a multi-level evolution

strategy and a Bertsekas algorithm, were compared. Both the starting vector and the

solution vector were identical for all computer runs (compare table 1). In figure 1, both

the experimental data and the optimized data for the strains with six different temperatures
are shown. In table 2 the CPU time, the number of function evaluations and the number

with

866 K

75a K

6,,

644 K 533 K 478 K

A/1

.. '

- experimunlal dato
. aprmilzid daa /

a(

366 K



608 R Mahnken and E Stein

Table 2. Aluminium according to Servi and Grant: comparison of three optimization algorithms
for cpu time, number of function evaluations and number of iterations.

Number of function Number of
cPu time (s) evaluations iterations

One-level 154 55386 13859
evolution strategy

Multi-level 47 36421 1217
evolution strategy

Bertsckas <1 29 25
algorithm

of iterations are compared for all computer runs. For this example the advantage of the
Bertsekas algorithm is obvious.

5.2. Numerical testsfor Steck's modelfor a ID tension specimen

In this section the material law due to Steck in its one-dimensional form is used for numerical
tests. Therefore, using the data for aluminium, Al 99.999, of table 3 and table 4, creep
curves were calculated which are shown in figure 2. For time integration the second-order
mid-point rule was applied. The results obtained are regarded as experimental data for the
following tests.

Table 3. tD specimen: material parameters for the model of Steck (Al 99.999).

Activation energy

Gas constant

Melting temperature

U0 149 kJ mol"'I

R 8.315 x 103 kJ molr 1 K-]

Tm 933(660) K (-C)
O.STm 466(193) K (CC)

cl 2.43 x 10"
C2 1.41 x 10

4

is 1.05 x 10-2
a 0.951
A 9.19

K 0.275
AlV 1.15

k) molrI s-I
u mor' s-l
mol kJ-I

kJ mm2 N-' mol'

Table 4. ID specimen: data for creep curve determination with Steck's model. Number of time
steps, 50; size of each time step, At = 80 s; number of stresses, 10.

1 2 3 4 5 6 7 8 9 10

a (MPa) 4.7 4.5 3.5 3.2 2.5 2.0 1.8 1.5 1.2 1.0
T (K) 660 670 680 690 700 710 720 730 740 750

Material
parameters
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2.0

a

1£r -_ - I

and 4.~~~~~~~~~~~~~~~~~~~

0.)

0.5~~~~~~~~~~~~~~~~~~~

6,70

1000 2000 0000 4000

time
Figure 2. flo specimen: 10 creep curves using Steck's model with data according to tables 3
and 4.

As an objective function for an inverse problem the following least-squares function
was considered:

f(rC) = E (Ek 2 - ) - mm. (79)
k=1 j=t t kj

For minimization of the objective function the Bertsekas algorithm was used. Two computer
runs were started using different starting vectors as shown in table 5. The solution vectors
of both runs are given in table 6. It can be seen, that both runs give the same solution,
which are identical to the vector of table 3. In table 7 some results are presented concerning
the number of iterations, the number of function evaluations and the CPU time. The iteration
behaviour of the objective function is shown in figure 3. Note that the evolution strategy
did not give satisfactory results after 3 h.

Table 5. tD specimen: starting vectors of two computer runs for identification of parameters.

Computer run 1 2

cl 1 1674535 k mol- t s-1
C2 1.0 14390.5 ki mo tI s- I
A' 1.0 1.0516 x 10-2 mol kj-I
a1 1.0 1.196
t 1.0 12.6
K 1.0 0.147
AV 1.0 2.28 x 10-2 U mm' N-I mol t

5.3. Compact tension specimen

In this section our optimization algorithm is tested for parameter identification in the context
of a finite-element method. The specific example is a compact tension (CT) specimen as

609
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Table 6. tD specimen: target and obtained values for the material parameters.

Target Obtained

cl 2.43 x 1011 2.43 x 1011 kj mol t s-L

Ca 1.41 x 104 1.41 x 104 LI molW' sI

A' 1.05 x 10-2 1.05 x 10-2 mol U-1

a 0.951 0.951
P 9.19 9.19
K 0.275 0.275
AV 1.15 1.15 L mm

2 N-' mol-t

Table 7. ID specimen: some results for two computer runs with the Bertsekas algorithm.

Computer run 1 2

Number of iterations 2783 3077

Number of function evaluations 4511 5390
cPu time (DN 10000) (min) 14.5 17.4

0
:0

tISa
_

co

0

42

0

number of iterations

Figure 3. I Dspecimen: iteration behaviour of the objective functions for the Bertsekas algorithm.

shown in figure 4. Of course, the deformations are below the limit of localization at the

nodge. As a material law Steck's model is used. The discretization is shown in figure 5. It

is the result of an adaptive refinement based on the Zienkiewicz-Zhu error estimator.

Conceptually we proceed in the same manner as in the previous example. Firstly a

direct problem was solved with material data of table 3. Using 30 unequally spaced time

steps we obtained creep curves for V, and Vl, at those points which are marked in figure 5.

The results for the creep curves are shown in figure 6.

As an objective function the following least-squares function was examined:

N=30 MP416 || VJ - Vj || m .

k=1 j=l klVrj - 11
(80)
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t II t t I I El= ia-2M Pa

-~~i &

4 6,0

44.0
120.0

1_ _ __ _ _ J; 1'-- -Xy;,

100.0 Imm)

Figure 4. Geomesty of a CT specimen.

1 7

2 1

Figure 5. CT specimen: discretization after adaptive refinement; marking of eight dale points.

Table S. ar specimen: starting, target and obtained values for the materia parameters.

Stardng Target Obtained

C' 10 2.43 x 101 2.37 x lOB kW mo21 s t

C2 104 1.42 x 1io 9.488 x 1io U mol-' S-l
)! 1.0 1.05 x 10-2 1.05 x O-c2 mol kj-

a 1.0 0.951 1.021
f6 1o4 9.19 9.19

K: 1.0 0.275 0.275
AV 1.0 1.15 I.15 W rmm2 N-3 WmI-

For optimization an SQP method as described in 1131 was applied. The iteration behaviour



R PMalhnken and E Stein

7--

0 s-=

a,

at,

0.!
Wi

5

4

2

2

0

-1

-2
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11i. 23
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21
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23, 202z, tB
2z Le

o 1 2 3 4 5 6 7 a 9 10

time t [see]

Figure 6. CT specimen: calculated creep curves with Steck's model; the numbers on the right-

hand side correspond to the nodes in figure 5.

._ 40-

20-

0

.4-

Q 0 

0 20 40 60 80 100 120

number of iterations

Figure 7. cr specimen: iteration behaviour of the scaled objective function for the SQP algorithm.

of the objective function is shown in figure 7. The number of iterations and the number of
function evaluations are as follows:

number of iterations:
number of function evaluations:

238
335.

In table 8 the starting values, the target values and the obtained values are shown. It

can be seen that four material parameters of the obtained values are identical to the target
values, whilst three values are different. This result and further tests indicate a dependence
of the material parameters which did not occur in the previous example.
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5.4. Discussion of the results

The results of the identification for the homogeneous test and for the CT specimen seem to
be contradictory. Whilst in section 5.2 all parameters were recovered by the optimization
process, we have a dependence of three parameters cl, C2 and a in section 5.3. The
reason is found in choosing the target functions: whereas in section 5.2 the experimental
displacement-time curves were calculated for 10 different temperatures, only one tempera-
ture was used in the second case.

In order to clarify this, we examine equations (10) and (I1), and, especially for constant
temperatures, the expressions

L\ ( K RT)
and

_e Wh- iaUo-,F O Fa ] Ff1
C2exp T = c2exp [ yj exp LFj- (82)

coast2

One recognizes that the terms consti, i = 1, 2 contain three instead of two independent
variables. Thus, it can be concluded that the material equation in the present form cannot
be used in general for identification of material parameters. At the moment the equations
are being modified for general requirements in collaboration with Professor Heck of the
Technical University of Braunschweig.

6. Conclusions

It is obvious that the identification of material paramters of complex constitutive equations
from various tests is an important requirement in order to obtain reliable simulations of
inelastic responses of system components. Mathematically this task is usually a Hadamard
problem.

Furthermore it could be shown that gradient methods are much more efficient than
stochastic evolution strategies even in the case of homogeneous stress fields.

Finally it is an important issue that general identification methods for material parameters
yield a verification of the constitutive equations for the domain of intended applications,
or even a falsification. The consideration of field equations makes it suitable for model
adaptivity describing different constitutive equations in different process areas.

The implementation of geometrical non-linearity including damage is in progress.

Appendix. The material law of Steck

A.). Jacobian matrix J

ag, C1 + 3 9AeS7In' 3A6'vk1 x

a g =C~tH-(-el_ U'kflnk+1,nT 1/2 + ,U*-(44 11T (83)
0ak+l 2 8 au~k+1/2 4avk+112 3

-s-A n (84)BFk+i 4RT vk+1 Ik1/2

ag2 _ 1
a_ X2 eink+1/2 (85)
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a92 = [-(+lc2exp (aUO -PFa+t1 2)IRT] A _ Aet61
1F-k i + (*+aeP 2RT 2X'RT) (86)

with

14 [1, 1, 1, o]T Sv k+1/2 = ( 1 4x4 - i14i4 ) Tk+l/2

nk+I/2 = 1 Sk+112 O1 (12 uk+1,2sak+l/2) (87)
COv,k+I/2

u'I,.k+- =Atk+IA'ct exp [-( [( - 1)/xI]Uo/RT)]

x 2sinh(~AVCk+112) exp(/ '1 (88)

3At2~ X'c1 exp exp -1}/IJuoJ )] - expRT- )
4(2sinh(AV/RTarC,,k+])2)) RT

x (2 sinh (A cRTjSk+l/2 1+1 2 cosh (A RT uk+1/2) ) (89)

e2 -1-A4u,+l (90)
2RT + hc2 X' exp [-(aUo -uk+-N 2)IR] + In(9k+)

A.2. Consistent tangent matrix

CT= b1 X3 + b2131T + b3nk+1, 2 nT 112 ()

with

bi1 =(92)
a,

b - b1a2 (93)
a, + 3a2

b - 3bla3 (94)
3a] + 2a3

and

v ^£uk+l (5
2g1 4 au, kv1/2

02 V vk+l (96)
E 4 0,k+1/2

a3 = 3ee2 - vk+1 (97)
80°v,k+1l2

A.3, Derivatives with respect to the material parameters

We define n: [x", AV, a, K, C11 ~, C2]

g -3nk+1/2 2+ i=1, ,7. (98)
aKi 3~z../ 8Ki



Parameters for visco-plastic models

v = 0 (99)

882 _ 1 aA LOi
K = __ v at6 ,+l i=2,4 1 5 (100)

a83 A vk+ - Aa3 tkC 2exp [-(aLo-fFk+1t 2)/RT] -° (101)

882 ___ Ae8k+l
84 = 8'aKx + Atk+1C2eXp[-aUo -,PFA+t2)/RT] f*+t2 (102)

082 _ I 8A7'k+1 + Atat+i exp [-(LTUo -fi Fk+i 2 )/RT] (103)
8K7 A' 8 K7

with

(104)

v~~k~l = -As"' 1'K)coth aok12 Cvk12 (105)
OK2 RT u.k-H (1 + l/x) (jRTk+is9)aa t 1 2

"In Al U0
8K3 = Suk+l UT (106)

a AAsnA (106)
v,k+I i vk+1 (U 1) ±In(2sin AV avk12 (107)

a<6 ~ (a

8K4 K2 RT' (RT

v~eDk+1 = O -A +(108)
8,c5 Cj ZK-t-

u =k-I-] (109)
8Kc6

=0. (110)
8K7
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